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Abstract. A solution for the mathematical problem of functional calculus with the Laplace–
Beltrami operator on surfaces with axial symmetry is found. A quantitative analysis of the
spectrum is presented.

1. Introduction

The physical situation which has initiated this research is that of a dielectric particle with
electrical charges on its surface, placed in electric field. Here, the diffusion equation of
the charges is coupled with the Maxwell equations. There is an analytical solution of
this system of equation [1] which involves some functional calculus with operators, in
particular with the Laplace–Beltrami operator defined on the surface of that particle. We
can imagine many other physical situations described by a complicated system of equations
where the Laplace–Beltrami operator is implicated (e.g. that of the acoustic wave scattering
on particles with membrane, etc). As before, one can find a compact solution by using
functional calculus. However, these solutions are not complete because, at this level, all
is formal. We must have an effective procedure to calculate the expressions which involve
operators. One can try to compute the matrices of those operators in some orthonormal basis
and to transform the problem into an algebraic one. The practical problem is that one can
compute only a finite number of matrix elements and this can lead to serious problems when
unbounded operators are implicated. If we choose an inappropriate basis, it is possible that
the expressions, calculated with truncated matrices, will not converge at the correct result.

In this paper we will find an orthonormal basis in the space of square integrable functions
defined on a surface with axial symmetry such that the truncated matrices of the Laplace–
Beltrami operator converge in the norm resolvent sense. Then, according to [5] we can use
these truncated matrices in functional calculus.

2. The result

LetM be aC∞ closed two-dimensional surface which in the spherical coordinates{r, θ, φ}
relative to a three-orthogonal system of axes is defined by the equationr = r(θ). We
consider that all necessary conditions having aC∞ surface are fulfilled. Let this surface be
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equipped with the metric which is induced by the embedding inR3 and letx0 ∈ M be the
point defined byθ = 0. Relative to this point, the normal coordinates{λ, ϕ} are defined by λ(x(θ, φ)) = d(x(θ, φ), x0) =

∫ θ

0
dt
√
r(t)2+ r ′(t)2

ϕ = φ
which parametrize the entire surface, without the pointsθ = 0, π . We defineR =
λ(x(π))/π and the new coordinates:{ϑ = λ/R, ϕ}. In these coordinates, the metric
form is

g(ϑ, ϕ) =
(
R2 0
0 r(θ(ϑ))2 sin(θ(ϑ))2

)
.

Proposition 1.The set ofC∞ functions:

Ylm : M→ C Ylm(ϑ, φ) =
√

R sinϑ

r(θ(ϑ)) sinθ(ϑ)

Ylm(ϑ, ϕ)

R
m ∈ Z, l > |m|

is an orthonormal basis inL2(M, µg), whereYlm represent the spherical harmonics andµg
is the measure induced onM by the metricg.

Proof. The orthonormality:

〈Ylm,Yl′m′ 〉 =
∫ π

0
dϑ
∫ 2π

0
dϕ
√

detg · Ylm(ϑ, ϕ)Y∗l′m′(ϑ, ϕ)

=
∫ π

0
dϑ
∫ 2π

0
dϕ Rr(θ) sinθ · R sinϑ

r sinθ

Ylm(ϑ, ϕ)
R

Y∗l′m′(ϑ, ϕ)
R

=
∫ π

0
dϑ
∫ 2π

0
dϕ sinϑ · Ylm(ϑ, ϕ)Y∗lm(ϑ, ϕ) = δll′δmm′ .

The completeness:∫ π

0
dϑ ′

∫ 2π

0
dϕ′

√
detg ·

∑
l,m

Ylm(ϑ, ϕ)Y∗l′m′(ϑ ′, ϕ′)f (ϑ ′, ϕ′)

=
∫ π

0
dϑ ′

∫ 2π

0
dϕ Rr(θ ′) sin(θ ′)

×
∑
l,m

√
R sinϑ

r(θ) sinθ

√
R sinϑ ′

r(θ ′) sinθ ′
Ylm(ϑ, ϕ)

R

Y ∗lm(ϑ
′, ϕ′)
R

f (ϑ ′, ϕ′)

=
√
R sinϑ

r(θ) sinθ

∫ π

0
dϑ ′

∫ 2π

0
dϕ′

∑
l,m

Ylm(ϑ, ϕ)Y
∗
lm(ϑ

′, ϕ′)

√
r(θ ′) sinθ ′

R sin(ϑ ′)
f (ϑ ′, ϕ′)

= f (ϑ, ϕ)
because

√
r(θ) sinθ
R sin(ϑ) f (ϑ, ϕ) is in L2(M, µg) if f ∈ L2(M, µg). �

For a fixedm, letSm be the Hilbert subspace spanned by{Ylm}l>|m|, which is invarianted
by the Laplace–Beltrami operator. In the following, we will consider the restriction of this
operator at aSm subspace,1(m) = 1|Sm . Let P (m)k , k > |m|, be the projection on the
subspace spanned by the vectorsY|m|m, . . . ,Ykm. Our main result is shown below.
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Theorem 2.The sequence of operators

{P (m)k [P (m)k ◦1(m) ◦ P (m)k − z]−1}k>|m|
converges in norm topology at the operator [1(m) − z]−1, for any z ∈ C with Imz 6= 0.

Proof. We have successively:

P
(m)
k

1

P
(m)
k ◦1(m) ◦ P (m)k − z

− 1

1(m) − z

= P (m)k

[
1

P
(m)
k 1(m)P

(m)
k − z

− 1

1(m) − z

]
− (I − P (m)k )

1

1(m) − z

= 1

P
(m)
k 1(m)P

(m)
k − z

P
(m)
k 1(m)(I − P (m)k )

1

1(m) − z − (I − P
(m)
k )

1

1(m) − z

= z

P
(m)
k 1(m)P

(m)
k − z

[
I + 1

z
P
(m)
k 1(m)(I − P (m)k )

]
(I − P (m)k )

1

1(m) − z .

Without loss of generality we can choosez = iω, ω ∈ R, ω 6= 0. Thus:∥∥∥∥∥P (m)k

1

P
(m)
k ◦1(m) ◦ P (m)k − z

− 1

1(m) − z

∥∥∥∥∥
6
(

1+ 1

ω
‖P (m)k 1(m)(I − P (m)k )‖

)
·
∥∥∥∥(I − P (m)k )

1

1(m) − iω

∥∥∥∥ .
Lemma 3.For l, k ∈ N, l, k > |m|, with l 6= k:

〈Ylm,1(m)Ykm〉 = 〈Ylm, h · Ykm〉
whereh is at least aC0 function andM. The operatorsP (m)k ◦1(m) ◦(I−P (m)k ) are bounded
and their norms satisfy:

‖P (m)k ◦1(m) ◦ (I − P (m)k )‖ 6 ‖h‖∞.
It follows that∥∥∥∥∥P (m)k

1

P
(m)
k ◦1(m) ◦ P (m)k − z

− 1

1(m) − z

∥∥∥∥∥ 6
(

1+ ‖h‖∞
ω

)
·
∥∥∥∥(I − P (m)k )

1

1(m) − iω

∥∥∥∥ .
To evaluate the last norm, we use the following lemma.

Lemma 4.Let s(ϑ) be the quantity
√

r sinθ
R sinϑ . If λ

(m)
|m| , . . . , λ

(m)
n , . . . are the ordered

eigenvalues of1(m) and υ(m)|m| , . . . , υ
(m)
n , . . . are the corresponding eigenvectors, then for

anym ∈ Z and l > |m|, l > 1 andn > |m|

|〈Ylm|υ(m)n 〉| 6
Rc

[
‖ds‖∞ + c

√
λ
(m)
n

]
√
l(l + 1)

and for anym ∈ Z, l > |m|, andn > |m|, n > 1

|〈Ylm|υ(m)n 〉| 6
c
[‖ds−1‖∞ + c

R

√
l(l + 1)

]√
λ
(m)
n

.
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Moreover:

1

c2

l(l + 1)

R2
6 λ(m)l 6 c2 l(l + 1)

R2

wherec = [max{‖s2‖∞, ‖s−2‖∞}]1/2.

Now, let υ ∈ L2(M, µg), υ =
∑

n>|m| an · υ(m)n . Then∥∥∥∥(I − P (m)k )
1

1(m) − iω
υ

∥∥∥∥2

=
∥∥∥∥ ∑
l>k+1

∑
n>|m|

an · 〈Ylm, υ
(m)
n 〉

λ
(m)
n − iω

Ylm
∥∥∥∥2

=
∑
l>k+1

∣∣∣∣ ∑
n>|m|

an · 〈Ylm, υ
(m)
n 〉

λ
(m)
n − iω

∣∣∣∣2 6 ∑
l>k+1

∑
n>|m|
|an|2 ·

∑
n>|m|

∣∣∣∣ 〈Ylm, υ(m)n 〉
λ
(m)
n − iω

∣∣∣∣2

> ‖υ‖2
∑
l>k+1

∑
n>|m|

∣∣∣∣∣∣∣∣
cR

[
‖ds‖∞ + c

√
λ
(m)
n

]
√
l(l + 1)(λ(m)n − iω)

∣∣∣∣∣∣∣∣
2

= (cR)2 ‖υ‖
2

k + 1

∑
n>|m|

∥∥∥∥∥∥∥∥
[
‖ds‖∞ + c

√
λ
(m)
n

]
λ
(m)
n − iω

∥∥∥∥∥∥∥∥
2

.

For |m| > 0,

∥∥∥∥(I − P (m)k )
1

1(m) − iω
υ

∥∥∥∥2

6 (cR)2 ‖υ‖
2

k + 1

∑
n>|m|

1

λ
(m)
n

[
c + ‖ds‖∞√

λ
(m)
n

]2

1+ ω2

λ
(m)2
n

6 (cR)2 ‖υ‖
2

k + 1

c + ‖ds‖∞√
λ
(m)
|m|

2 ∑
n>|m|

1

λ
(m)
n

.

Finally ∥∥∥∥(I − P (m)k )
1

1(m) − iω

∥∥∥∥ 6 (cR)2√
(k + 1)|m|

[
c + cR‖ds‖∞√|m|(|m| + 1)

]
.

For |m| = 0,

∥∥∥∥(I − P (0)k )
1

1(0) − iω
υ

∥∥∥∥2

6 ‖υ‖
2

k + 1

 (cR)2‖ds‖2
∞

ω2

∑
n>1

(cR)2
1

λ
(0)
n

[
c + ‖ds‖∞√

λ
(0)
n

]
1+ ω2

λ
(0)2
n


6 (cR)2 ‖υ‖

2

k + 1

(
‖ds‖2

∞
ω2

+ (cR)2
[
c + cR‖ds‖∞√

2

]2
)

thus: ∥∥∥∥(I − P (0)k )
1

1(0) − iω

∥∥∥∥ 6 (cR)2√
(k + 1)

√
‖ds‖2∞
(cR)2ω2

+
[
c + cR‖ds‖∞√

2

]2

.



The Laplace–Beltrami operator on surfaces with axial symmetry 4293

Having that‖ds‖∞ = 1
R
‖ ∂s
∂ϑ
‖∞ = 1

R
‖s ′‖∞ we can conclude:∥∥∥∥∥P (m)k

1

P
(m)
k ◦1(m) ◦ P (m)k − iω

− 1

1(m) − iω

∥∥∥∥∥
6


(

1+ ‖h‖∞
ω

)
(cR)2√
(k + 1)

√
1
R
‖s ′‖∞

(cR)2ω2
+ c2

[
1+ ‖s

′‖∞√
2

]2

for m = 0(
1+ ‖h‖∞

ω

)
c3R2

√
(k + 1)|m|

[
1+ ‖s ′‖∞√|m|(|m| + 1)

]
for |m| > 1.

�

Proof of lemma 3.We have successively

〈Ylm,1(m)Ykm〉 = 〈dYlm, dYkm〉 =
∫ π

0
dϑ
∫ 2π

0
dϕ R2 sinϑs2

×
[

1

R2

∂

∂ϑ

(
Y ∗lm
sR

)
∂

∂ϑ

(
Ykm

sR

)
+ m2s−6

R2 sinϑ2

Y ∗lm
R

Ykm

R

]
=
∫ π

0
dϑ
∫ 2π

0
dϕ

sinϑ

R2

×
[
∂

∂ϑ
Y ∗lm

∂

∂ϑ
Ykm − ∂ ln s

∂ϑ

∂

∂ϑ
(Y ∗lmYkm)+

(
∂ ln s

∂ϑ

)2

Y ∗lmYkm

]

+ 1

R2

∫ π

0
dϑ
∫ 2π

0
dϕ sin(ϑ)

m2s−4

R2 sin2 ϑ
Y ∗lmYkm

= 1

R2

∫ π

0
dϑ
∫ 2π

0
dϕ sinϑ

[
∂

∂ϑ
Y ∗lm

∂

∂ϑ
Ykm + m2s−4

R2 sin2 ϑ
Y ∗lmYkm

]
+ 1

R2

∫ π

0
dϑ
∫ 2π

0
dφ sinϑ

[(
∂ ln s

∂ϑ

)2

− 1

sinϑ

∂

∂ϑ

(
sinϑ

∂ ln s

∂ϑ

)]
· Y ∗lmYkm

=
∫ π

0
dϑ
∫ 2π

0
dϕ

sinϑ

R2

×
[
m2 s

−4− 1

R2 sin2 ϑ
+
(
∂ ln s

∂ϑ

)2

− 1

sinϑ

∂

∂ϑ

(
sinϑ

∂ ln s

∂ϑ

)]
Y ∗lmYkm.

It is easy to check thats(ϑ) is at least ofC2 class, so that the functionh : [0, π ] → R,

h(ϑ) = m2 s
−4− 1

R2 sin2 ϑ
+
(
∂ ln s

∂ϑ

)2

− 1

sinϑ

∂

∂ϑ

(
sinϑ

∂ ln s

∂ϑ

)
is at least ofC0 class. Finally

〈Ylm,1(m)Ykm〉 = 1

R2

∫ π

0
dϑ
∫ 2π

0
dφ sinϑ · h(ϑ) · Y ∗lmYkm

=
∫ π

0
dϑ
∫ 2π

0
dϕ sin(ϑ)s2 · h(ϑ) · Y

∗
lm

Rs

Ykm

Rs
= 〈Ylm, h · Ykm〉.
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For the second part

|〈υ|P (m)k ◦1(m) ◦ (I − P (m)k )|u〉| = |〈P (m)k υ|1(m)|(I − P (m)k )u〉|
= |〈P (m)k υ, h · (I − P (m)k )u〉| 6 ‖P (m)k υ‖ · ‖h · (I − P (m)k )u‖ 6 ‖h‖∞‖υ‖ · ‖u‖.

�

Proof of lemma 4.

Proposition 5.The applicationg̃ : (0, π)× [0, 2π ] → M(2× 2)

g̃(ϑ, ϕ) =
(

1 0
0 R2 sin(ϑ)2

)
defines a metric onM. Moreover,

√
detg
detg̃ = s2.

If we consider the spaces of the squared integrable functions with the measures induced
by the two metrics,L2(M, µg) andL2(M, µg̃), and the spaces of one-differential forms with
the standard scalar products,A(1)(M, µg) andA(1)(M, µg̃), then we obtain the following
proposition.

Proposition 6.The spacesL2(M, µg) and L2(M, µg̃) coincide, as doA(1)(M, µg) and
A(1)(M, µg̃).

Proof. For f ∈ L2(M, µg) we have

‖f ‖g̃ =
∫ π

0
dϑ
∫ 2π

0
dϕ
√

detg̃(ϑ)|f (ϑ, ϕ)|2 6
∥∥∥∥∥
√

detg̃(ϑ)√
detg(ϑ)

∥∥∥∥∥
∞
· ‖f ‖2

g 6∞

thus,f ∈ L2(M, µg̃). Analogous, forf ∈ L2(M, µg̃) results

‖f ‖g =
∫ π

0
dϑ
∫ 2π

0
dϕ
√

detg(ϑ)|f (ϑ, ϕ)|2 6
∥∥∥∥∥
√

detg(ϑ)√
detg̃(ϑ)

∥∥∥∥∥
∞
· ‖f ‖2

g̃ 6∞

thusf ∈ L2(M, µg).

Figure 1. r(θ) = 1+ 1.2 cos(θ)+ 3 cos(θ)2.
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Figure 2. Eigenvalues of the 15× 15 truncated matrix.

Figure 3. Eigenvalues of the 20× 20 truncated matrix.

Let ω ∈ A(1)(M, µg), ω = ωϑ dϑ + ωϕ dϕ. Following∫ π

0
dϑ
∫ 2π

0
dϕ
√

detg̃(ϑ)g(ω̄, ω) =
∫ π

0
dϑ
∫ 2π

0
dϕ
√

detg̃(ϑ)

[
|ωϑ |2+ |ωϕ|

2

detg̃

]

6 max

{√
detg̃

detg
,

√
detg

detg̃

}
· ‖ω‖2

g >∞

thusω ∈ A(1)(M, µg̃). The same steps can be followed to show thatω ∈ A(1)(M, µg̃) ⇒
ω ∈ A(1)(M, µg). Denoting

c =
√

max{‖s2‖∞, ‖s−2‖∞}
we have onL2(M, µg) ≡ L2(M, µg̃):

1

c
‖ ‖g̃ 6 ‖ ‖g 6 c‖ ‖g̃
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Figure 4. Eigenvalues of the 25× 25 truncated matrix.

Figure 5. Eigenvalues of the 30× 30 truncated matrix.

and, onA(1)(M, µg̃) = A(1)(M, µg):
1

c
‖ ‖g̃ 6 ‖ ‖g 6 c‖ ‖g̃ .

�

Now, we have successively

|〈Ylm|υ(m)n 〉g| =
∣∣∣∣∣
〈
Ylm

sR
|υ(m)n

〉
g

∣∣∣∣∣ =
∣∣∣∣∣
〈
Ylm

R
|s−1 · υ(m)n

〉
g

∣∣∣∣∣
=

∣∣∣∣〈1̃ Ylm
R
|s−1 · υ(m)n

〉
g

∣∣∣∣
l(l+1)
R2

=

∣∣∣∣〈1̃ Ylm
R
|s · υ(m)n

〉
g̃

∣∣∣∣
l(l+1)
R2

6
∥∥dYlm

R

∥∥
g̃
· ‖d(s · υ(m)n )‖g̃
l(l+1)
R2
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Figure 6. The superposition.

Figure 7. Eigenvalues of the 15× 15 truncated matrix.

6 R√
l(l + 1)

[‖ds‖∞‖υ(m)n ‖g̃ + ‖s‖∞‖dυ(m)n ‖g̃] 6
cR

[
‖ds‖∞ + c

√
λ
(m)
n

]
√
l(l + 1)

.

For the second set of inequalities:

|〈Ylm|υ(m)n 〉| =
1

λ
(m)
n

|〈Ylm|1υ(m)n 〉| 6
1

λ
(m)
n

‖dYlm‖g‖dυ(m)n ‖g 6
c‖dYlm‖g̃√

λ
(m)
n

6
c
[‖ds−1‖∞ + c

R

√
l(l + 1)

]√
λ
(m)
n

.

For the last set of inequalities of lemma 4, once we have the results of the last proposition
we can follow the method of [2], or that presented in [3]. �
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Figure 8. Eigenvalues of the 20× 20 truncated matrix.

Figure 9. Eigenvalues of the 25× 25 truncated matrix.

3. Numerical application

Generally, the spectrum of the truncated matrices does not converge at the exact spectrum.
Without additional results, one knows that only the lowest eigenvalue of the truncated
matrices converges at the exact value [6]. The results of section 2 have another important
consequence: in the proposed basis, the spectrum of the truncated matrices converges at
the exact spectrum. Moreover, because the matrix of the Laplace–Beltrami operator in the
Y basis is ‘quasidiagonal’ in the sense that all nondiagonal elements are bounded by‖h‖∞
and the diagonal elements increase approximately asl(l + 1)/R2, it is to be expected that
the spectrum of these truncated matrices is very stable. That means, that even for low
dimensions these matrices give us a good approximation of the exact spectrum. Let us
choose the particular surfaces of figure 1 for our numerical application.

The eigenvalue for different truncated matrices andm = 0 are presented in figures 2–6.
Now, let us choose an orthonormal basis for which the affirmation of lemma 4 is not
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Figure 10. Eigenvalues of the 30× 30 truncated matrix.

Figure 11. The superposition.

true. If dµg(θ, φ) = σ(θ, φ) sinθ · dθ dφ is the measure induced by the metricg in the
coordinates{θ, φ}, then:

Proposition 7.The setỸ of functions:

Ỹlm(θ, φ) = Ylm(θ, φ)√
σ(θ, φ)

m = 0, 1, . . . , l = |m|, |m| + 1, . . .

is an orthonormal basis inL2(M, µg).

The proof of this proposition is analogous to that of proposition 1. The eigenvalues of
different truncated matrices, calculated in this basis and for the casem = 0, are presented
in figures 7–11.

The numerical application shows that in this case the spectrum of the truncated matrices
is very unstable. This instability can be considered as an indicator of the fact that for the
Ỹ basis the affirmation of our theorem is not true.
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4. Conclusion

This paper has shown how to construct an orthonormal basis in the space of square integrable
functions defined on aC∞ surface with axial symmetry, a basis which is appropriate for
the problems which involve the Laplace–Beltrami operator. The procedure is standard, in
the sense that it can be applied following the same steps for anyC∞ surface with axial
symmetry. The stability of the truncated matrices spectrum was theoretically anticipated and
numerically verified. By a practical point of view, this allows us to use truncated matrices
with small number of rows and columns.
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